TRANSFORMER BUSHINGS

Product Spectrum

Context

Bushings are the components of the Power Transformer specified to realize the connection to the high voltage electrical network and switchgear devices, allowing the flow of the electrical power.

Power Transformers need extremely reliable High Voltage Bushings for performing their task. The highest product quality level is therefore essential.

Bushings must be able to carry the Power Transformer current of thousands of Amperes, while subjected to high voltage of thousands of Volts, withstanding mechanically stressed conditions.

Should the Bushing fail its task, the complete function of the Power **Transformers will be jeopardized** and, in some cases, the Transformers could also go to fire.

We are world leaders in power engineering and in the design of specialized electrical products, with long history as manufacturers of high-voltage bushings, in both Dry and Oil impregnated technologies, using state-of-the-art manufacturing and testing facilities.

Our bushings are certified in accordance with the latest international standards, such as ISO/EN, IEC, IEEE, CSA, NFC.

Our Solution

HSP & Trench provide a wide range of bushing products, including bushings for power transformers and HVDC transmission. HSP & Trench transformer bushings are designed to be connected to oil-insulated and ester power transformers and operate with the following environmental media: outdoors, cable junction box-oil and gas insulated substations. Our product spectrum includes transformer bushings with condenser grading and a choice of active part insulation: resin-impregnated paper (RIP), resin-impregnated synthetic bushings (RIS), resin-impregnated glassfiber (RIG), oil-impregnated paper (OIP) and ester fluid impregnated paper.

PROVEN RELIABILITY

 Pioneer of Dry-type Bushings technologies More than 80 years experience in bushing manufacturing
 More than 380,000 units installed worldwide in various environments and under operation for decades

PREMIUM QUALITY

• Extremely Robust Design through best-in-class insulating stress control, increasing safety, durability & reliability • Rigorous Quality Control for entire supply chain and manufacturing processes

EVOLVING PORTFOLIC

· Complete Product Portfolio available up to 1200 kV · High level of customization allows us to meet the widest range of customer design requirements based on various industry standards (IEC, IEEE, GOST, etc.) and to match other vendors' products for replacements

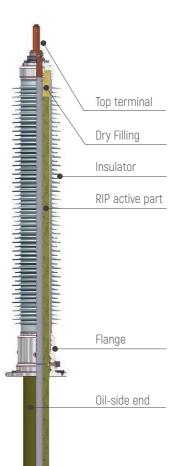
CONTINUOUS INNOVATION

· We are finely tuned to our customers' evolving requirements, constantly innovating with improved, more efficient and more environmentally-friendly products and technologies

GLOBAL PRESENCE

• Our worldwide presence ensures customer proximity, allowing access to expert technical support at all times · Largest production capacity offering maximum flexibility for our customers

TRANSFORMER BUSHINGS | 2021

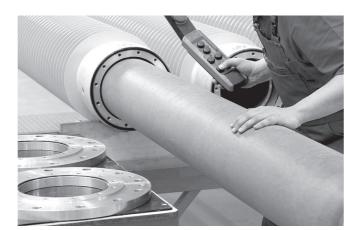

The insulating body of the RIP condenser bushing (Resin Impregnated Paper) is made of special paper vacuum-impregnated with epoxy resin. During the winding process, conductive layers made of aluminum foil are inserted between the paper for grading the electric field. Thanks to their good conductivity, optimum voltage distribution is guaranteed even in case of rapid voltage changes.

After the winding process, the core is impregnated under vacuum with epoxy resin and hardened to form the solid condenser core. It receives its final shape by means of turning.

RIP bushings present no technological constraints with regard to the installation position.

All RIP bushings could be equipped with porcelain or composite outdoor insulators.

All our composite insulators have fiberglass tubes as additional protection providing safety, higher mechanical protection, increased seismic performance and extended lifetime of the bushing.

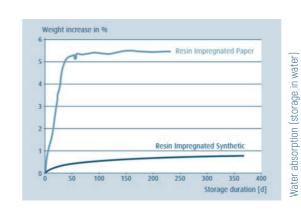


AC and HVDC application

HSP & Trench is pioneer and leader for dry type HVDC

Today we offer special HVDC bushings for high voltage direct-current transmission systems, which can be connected to HVDC transformers, according to the maximum installed power in the world: 1200kV rated voltage, to allow a transmitted power capacity of 12 GW.

In addition to standardized products, we also offer our customers individualized products tested in our fully equipped, internationally accredited test facility.


RIStechnology

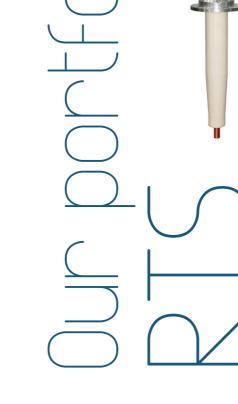
RIS (Resin Impregnated Synthetic) bushings, the new paper-free bushings, are based on the RIP technology that has been proven in use for more than 60 years now.

RIS bushings are characterized by their extremely stable dielectric **properties**, which are attributable in part to the major reduction in moisture absorption at exposed active surfaces, (e.g. the oil end of transformer bushings), thanks to the paper-free active part.

All RIS bushings could be equipped with porcelain or composite outdoor insulators. All our composite insulator have fiberglass tubes as additional protection providing safety, higher mechanical protection, increased seismic performance and extended lifetime of the bushing.

Available portfolio up to 550kV - 3000A.

TRANSFORMER BUSHINGS | 2021 TRANSFORMER BUSHINGS | 2021



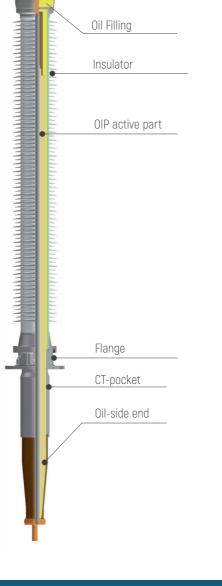
						KFY T	ГЕСНИІ	CAL DA	TΔ - IF	<u>r</u> .						
	Standard IEC 60137-2017															
	U _m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	800
	Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1175	1550	1800	2400
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	850	850	950	1175	1300	1550
	Maximum Rated Current (Draw-lead/removeable cond.)	А	800/ 1600	800/ 1600	800/ 1600	800/ 1600	-	800/ 1600	800/ 1600	800/ 1250	800/ 1250	-	-	-	-	-
STANDARD	Maximum Rated Current (Solid conductor)	А	2500	2500	2500	2500	-	2000	2000	2000	1600	-	-	-	-	-
A	Temperature range	°C		-30°C / +40°C standard - down to -60°C up to +55°C available on request												
	Seismic withstand	ı	Up to 0.5 g Standard design up to 0.3 g acc. to IEC 61463-2016													
ED	Maximum Rated Current [Draw-lead/removeable cond.]	А	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2500	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 2000	1250/ 1600	1250/ 1600	1250/ 2000
SUSTOMIZ	Maximum Rated Current* (Solid conductor)	А	4000	4000	4000	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	1600
	Temperature range	°C		-30°0	C / +40°C s	standard -	down to	-60°C up t	o +55°C ca	apability u	p to 550kV	upon req	uest			
Seismic withstand 0.5g acc. to IEC 61463-2016 up to 550kV available on request																

Key Technical Data - IEEE												
Standard IEEE C57.19.01-2017												
U _m	kV	25	34,5	46	69	115	138	161	230	345	500	765
Lightning impulse (BIL)	kV	150	200	250	350	550	650	750	900	1175	1675	2050
Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	825	1175	1450
Maximum Rated Current [Draw-lead/removeable cond.]	А	800/ 2000	-									
Maximum Rated Current** (Solid conductor)	А	5000	5000	4000	4000	3000	4000	3000	5000	3000	3000	2000
Temperature range	°C	-30°C	c to +40°C	standard;	down to	-60°C up t	o +55°C a	vailable or	n request			
Seismic withstand		High se	eismic leve	el up to 50	00 kV for o	certain des	signs only	, acc. to IE	EEE 693-20	118		

					KEY 1	ГЕСНИ	CAL DA	ATA - IE	С						
Standard						IEC 6	0137-201	7							
U_m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	550
Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1175	1550	1675	1800
Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	850	850	950	1175	1175	1300
Maximum Rated Current [Draw-lead/removeable cond.]	А	800/ 1600	800/ 1600	800/ 1600	800/ 1600	-	800/ 1600	800/ 1600	800/ 1250	800/ 1250	-	-	-	-	-
Maximum Rated Current [Solid conductor]	А	2500	2500	2500	2500	-	2000	2000	2000	1600	-	-	-	-	-
Temperature range	°C			-30°C	/+40°C sta	andard; do	own to -60°	°C up to +	55°C availa	able on red	quest				
Maximum Rated Current [Draw-lead/removeable cond.]	А	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2500	800/ 2000	800/ 2000	800/ 2000	800/ 2000	800/ 2000	800/ 1600	1250/ 1600	1250/ 1600
[Draw-lead/removeable cond.] Maximum Rated Current* [Solid conductor] Temperature range	А	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	2500	2000
Temperature range	°C			-30°C	/+40°C sta	andard; do	wn to -60°	°C up to +5	55°C availa	ible on req	uest				

			Ke	y Tech	nical D	lata - II	EEE					
Standard IEEE C57.19.01-2017												
U_m	kV	25	34,5	46	69	115	138	161	230	345	500	500
Lightning impulse (BIL)	kV	150	200	250	350	550	650	750	900	1175	1675	1800
Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	825	1175	1175
Maximum Rated Current [Draw-lead/removeable cond.]	А	400	400	400	400	800	800	800	800	800	800	800
Maximum Rated Current** (Solid conductor)	А	5000	5000	4000	4000	3000	4000	3000	5000	3000	3000	3000
Temperature range	°C		-30°	°C/+40°C s	standard; o	down to -6	0°C up to	+55°C avai	ilable on re	equest		

TRANSFORMER BUSHINGS | 2020 TRANSFORMER BUSHINGS | 2021



The condenser body of OIP (Oil Impregnated Paper) bushings is manufactured winding around a central conductor insulating kraft paper, dried under temperature and vacuum and then impregnated with insulating mineral oil. During the winding process, a series of aluminum foils are coaxially inserted between the layers of the paper, to achieve the best possible distribution of the radial and longitudinal electrical gradients between the central tube and the flange, which is grounded. Every winding is then impregnated with mineral oil. Each bushing is placed under pressure to ensure thorough impregnation and to test that it is properly sealed. After impregnation, the bushing is head filled with a nitrogen cushion.

All OIP bushings could be equipped with porcelain or composite outdoor insulators.

Top terminal

Oil level indicator

	Key Technical Data - IEC															
	Standard	Standard IEC 60137-2017														
	U_m	kV	24	36	52	72,5	100	123	145	170	245	300	362	420	550	550
	Lightning impulse (BIL)	kV	125	170	250	325	450	550	650	750	1050	1050	1300	1425	1675	1800
	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	-	750	850	950	1050	1175	1300
	Maximum Rated Current (Draw-lead/removeable cond.)	А	1000/ 1250	1000/ 1250	1000	1000	1000	1000	1000							
IEC	Maximum Rated Current (Solid conductor)	Α	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150	3150
	Temperature range	°C			-30°C /	/ +40°C sta	andard - d	own to -6	0°C up to	+55°C avail	able on re	quest				
	Seismic withstand			Or						3-2016 (exc 50 kV for						

							_						
	Key Technical Data - IEEE												
	Standard IEEE C57.19.01-2017												
	U_m	kV	25	34,5	69	115	138	161	230	345	500		
	Lightning impulse (BIL)	kV	150	200	350	550	650	750	900	1175	1675		
IEEE	Switching impulse (SIL)	kV	-	-	-	-	-	-	-	825	1175		
	Maximum Rated Current [Draw-lead/removeable cond.]	А	800/ 1200	800	800								
	Maximum Rated Current (Solid conductor)	А	3000	3000	3000	3000	3000	3000	3000	3000	3000		
	Temperature range	°C	-30°C to	+40°C sta	andard; lov	ver tempe	ratures ar	nd up to +5	5°C availa	ble on req	uest		
	Seismic withstand Standard design: Low seismic level acc. to IEEE 693-2018												

IEEE OIP bushings are branded "STAROIP" and "STARON" and manufactured by Trench France under the Siemens Energy brand

TRANSFORMER BUSHINGS | 2021 TRANSFORMER BUSHINGS | 2021

Esten impregnated

HSP&Trench helps you to reduce the environmental impact and developed the first Ester fluid insulated bushing on the market. The Ester bushing portfolio is derived from the design of standard OIP transformer portfolio, providing the same main features and full product range available.

In addition, Ester impregnation brings complementary customer benefits:

- Readily **biodegradable**
- Reduced containment measures for transformer installation or bushing storage
- Fire safety
- Demanding overload conditions
- Longer working life, thanks to the improved life characteristics of kraft paper when combined with ester liquid

Available with composite and porcelain outdoor insulator.

Can be used for traditional oil transformers as well as for ester transformers.

bushing solution

kV 325 450 550 650 750 1050 kV 270 375 460 540 Switching impulse (SIL) Maximum Rated Current (Draw-lead) Maximum Rated Current (Removeable conductor)* 1250 1250 1250 1250 1250 Temperature range Standard design up to 0.5 g acc. to IEC 61463-2016. On request: IEEE 693-2018 High seismic level for certain designs only Seismic withstand


Top terminal Oil level indicator Ester Filling Insulator Active part CT-pocket Oil-side end

High current bushing for GSU transformers

RIG/RIP technology

· 24 – 36 kV

· Up to 31.500 A

OIP technology

· 123 – 550 kV · Up to 2.500 A

· 72,5 – 550 kV

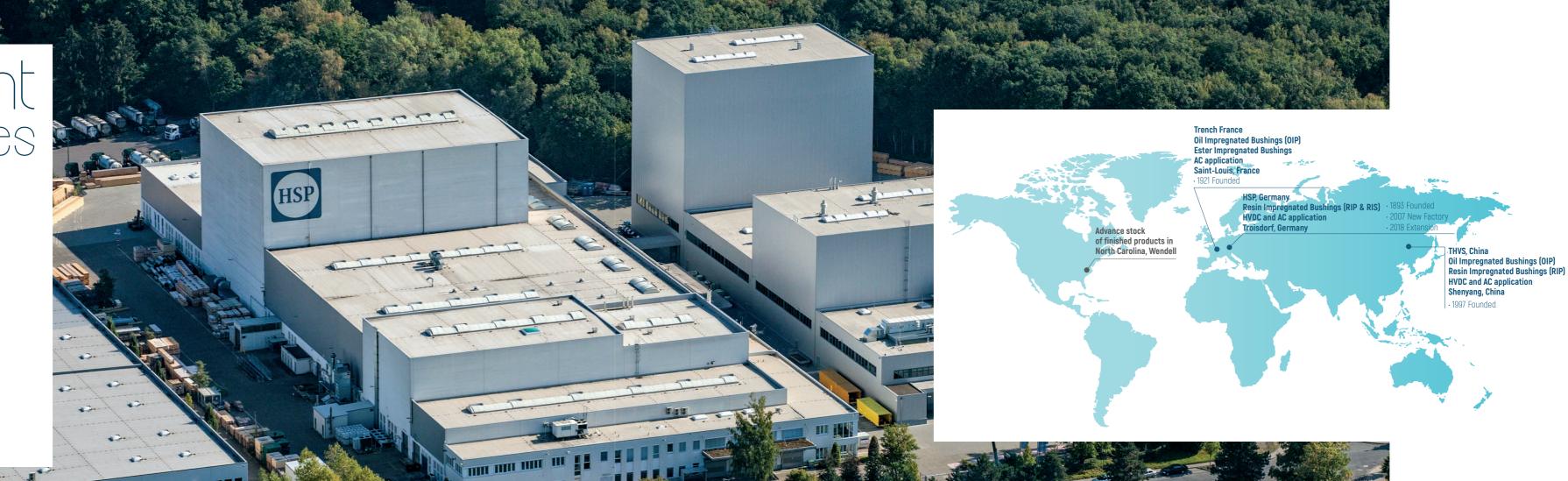
· Up to 3.150 A

Cable junction box Transformer

RIP/RIS technology

· 72,5 – 550 kV

• Up to 1.600 A


Global footprint and technologies

Full engineering and R&D team available in France, Germany and China to support your requests "

INSTALLED BASE:

- OIP technology: 230.000 bushings installed
- · RIP/RIS technology: 150.000 bushings installed

We are standing for high quality and the best technology, we are focused on constantly reducing delivery time. Our average lead times got reduced by 30% over the last two years.

TRANSFORMER BUSHINGS | 2021 TRANSFORMER BUSHINGS | 2021

HSP Hochspannungsgeräte GmbH

Camp-Spich-Str. 18 53842 Troisdorf-Spich, Germany Phone: +49 (0) 22 4125 26-0 Fax: +49 (0) 22 41 25 26-116 E-mail: contact@hspkoeln.de

Trench France SAS

16, Rue Général Cassagnou B.P. 80070 68302 Saint-Louis Phone: +33 3 89 70-23 23 Fax: +33 3 89 67 23 08 E-mail: tf-sales@trench-group.com

Trench High Voltage Shenyang

No. 2 Jingshenxisan Street
Daiyi Economic Development Zone
Shenbei New District, Shenyang 110136
People's Republic of China
Phone: 86-24-8 89 23 99
Fax: 86-24-89 73 72 00E
E-mail: mkt.thvs@trench-group.com

